Enrollment No:-

Exam Seat No:-

C.U.SHAH UNIVERSITY

Summer-2015

Subject Code: 2TE01BMT2 **Course Name: Diploma** Semester: 1

Subject Name: Basic Mathematics

Date: 04/05/2015 Marks: 70 Time: 10:30 To 01:30

Instructions:

- 1) Attempt all Questions of both sections in same answer book/Supplementary.
- 2) Use of Programmable calculator & any other electronic instrument prohibited.
- 3) Instructions written on main answer book are strictly to be obeyed.
- 4) Draw neat diagrams & figures (if necessary) at right places.
- 5) Assume suitable & perfect data if needed.

Q - 1 Do as directed.

- (1) $AB = _$ where A(1, 2) and B(2, 3).
- (2) Find the midpoint of (2, 3) and (4, 7).
- (3) If A(-3, 5) and B(2, -4) are two points, find slope of AB.
- (4) Find x intercept of the line 2x + 3y 4 = 0.

(5) Order of matrix
$$\begin{bmatrix} 1 & 2 & 5 \\ 2 & 3 & 7 \end{bmatrix}$$
 is = _____

(6) If
$$A = \begin{bmatrix} -7 & 6 \\ 5 & -2 \end{bmatrix}$$
 then $AI = _$

(7) If
$$\mathbf{A} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
 then $\operatorname{adj} \mathbf{A} = _$

(8) If $\begin{vmatrix} x & z \\ 4 & 2 \end{vmatrix} = 0$ then x =____.

- (9) Number of terms in the expansion of $(x + y)^5 =$ _____.
- (10) $\sin^2\theta + \cos^2\theta =$ _____.
- (11) 6C₂=____

(11) $\cos_2 \frac{\pi}{2} \sin \frac{3\pi}{2} \sin \frac{5\pi}{2} =$... (12) $\cos \frac{\pi}{2} \sin \frac{3\pi}{2} \sin \frac{5\pi}{2} =$... (13) $20^\circ =$ _____ radian. (14) $\frac{\pi}{9}$ radian = _____ degree.

Attempt any four

Q-2

- (1) Show that the points (4, 8), (4, 12) and $(4 + 2\sqrt{3}, 10)$ are the vertices of an equilateral triangle. (5)
- (2) Find co ordinates of the point of trisection of the line segment joining points (4, 5) and (13, -4).(5)
- (3) Show that (3, 2), (5, 4) and (7, 6) are collinear.

(4)

Q – 3

- (1) Find the equation of line perpendicular to line 4x y + 5 = 0 and passing through (1, -2).
- (2) Find centre and radius of circle $x^2 + y^2 2x + 4y 1 = 0.$ (5)
- (3) Find the equation of circle having centre (2, 3) and passing through (3, 4). (4)

(1) If
$$A = \begin{bmatrix} 2 & 3 & 6 \\ -1 & 2 & 5 \end{bmatrix}$$
, $B = \begin{bmatrix} 0 & 2 & -8 \\ 2 & 4 & -2 \end{bmatrix}$ and $C = \begin{bmatrix} 1 & 3 & -3 \\ 1 & 4 & 1 \end{bmatrix}$, prove that
2A + 3B - 4C = 0. (5)

(2) If
$$\mathbf{A} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
, prove that $A^2 - 5A - 2I = O.$ (5)

(3) If
$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}, \mathbf{B} = \begin{bmatrix} 1 & 2 \\ 2 & 1 \\ 1 & 2 \end{bmatrix}$$
, find AB and BA. (4)

(1) Solve the equations using matrix method: 2x - y = 43x + y = 1 (5)

(2) If
$$A = \begin{bmatrix} -4 & -3 & -3 \\ 1 & 0 & 1 \\ 4 & 4 & 3 \end{bmatrix}$$
, prove that $adjA = A$. (5)

(3) If
$$\mathbf{A} = \begin{bmatrix} 2 & 3 \\ 1 & 0 \end{bmatrix}, \mathbf{B} = \begin{bmatrix} 4 & 1 \\ 2 & -3 \end{bmatrix}$$
, prove that $(\mathbf{A} + \mathbf{B})^{\mathrm{T}} = \mathbf{A}^{\mathrm{T}} + \mathbf{B}^{\mathrm{T}}$. (4)

(1) Find the middle term of
$$\left(\frac{x}{2} + \frac{2}{y}\right)^{12}$$
. (5)

(2) Find the constant term of
$$\left(x^2 - \frac{1}{x}\right)^{6}$$
. (5)

(3) Find the approximate value of
$$\sqrt[5]{1003}$$
 using binomial theorem. (4)

Q – 7

(1) Draw the graph of $y = sinx \ (0 \le x \le \pi)$. (5)

(2) Prove that
$$\frac{\cos(90^\circ - A)\cos(180^\circ - A)\tan(180^\circ + A)}{\sin(90^\circ - A)\sin(180^\circ - A)} = 1$$
 (5)

(3) Prove that
$$\tan 20^\circ + \tan 25^\circ + \tan 20^\circ \tan 25^\circ = 1.$$
 (4)

(1) Prove that
$$\sin 3\theta = 3\sin \theta - 4\sin^3 \theta$$
. (5)
(2) Prove that $\frac{\sin 4x + \sin 5x + \sin 6x}{\sin 4x + \sin 5x + \sin 6x} = \tan 5x$. (5)

(2) Prove that
$$\tan^{-1}\left(\frac{1}{2}\right) + \tan^{-1}\left(\frac{1}{3}\right) = \frac{\pi}{4}.$$
(3) Prove that
$$\tan^{-1}\left(\frac{1}{2}\right) + \tan^{-1}\left(\frac{1}{3}\right) = \frac{\pi}{4}.$$
(4)

(5)