\qquad

C.U.SHAH UNIVERSITY

Summer-2015
Subject Name: Basic Mathematics

Subject Code: 2TE01BMT2
Course Name: Diploma
Semester: 1

Date: 04/05/2015
Marks: 70
Time: 10:30 To 01:30

Instructions:

1) Attempt all Questions of both sections in same answer book/Supplementary.
2) Use of Programmable calculator \& any other electronic instrument prohibited.
3) Instructions written on main answer book are strictly to be obeyed.
4) Draw neat diagrams \& figures (if necessary) at right places.
5) Assume suitable \& perfect data if needed.
$\mathrm{Q}-1 \quad$ Do as directed.
(1) $\mathrm{AB}=$ \qquad where $\mathrm{A}(1,2)$ and $\mathrm{B}(2,3)$.
(2) Find the midpoint of $(2,3)$ and $(4,7)$.
(3) If $\mathrm{A}(-3,5)$ and $\mathrm{B}(2,-4)$ are two points, find slope of AB .
(4) Find x intercept of the line $2 x+3 y-4=0$.
(5) Order of matrix $\left[\begin{array}{lll}1 & 2 & 5 \\ 2 & 3 & 7\end{array}\right]$ is $=$ \qquad .
(6) If $A=\left[\begin{array}{cc}-7 & 6 \\ 5 & -2\end{array}\right]$ then $A I=$ \qquad .
(7) If $\mathrm{A}=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ then $\operatorname{adj} \mathrm{A}=$ \qquad .
(8) If $\left|\begin{array}{ll}x & 1 \\ 4 & 2\end{array}\right|=0$ then $\mathrm{x}=$ \qquad .
(9) Number of terms in the expansion of $(x+y)^{5}=$ \qquad .
(10) $\sin ^{2} \theta+\cos ^{2} \theta=$ \qquad
(11) $6 \mathrm{C}_{2}=$ \qquad
(12) $\cos \frac{\pi}{2} \sin \frac{3 \pi}{2} \sin \frac{5 \pi}{2}=$ \qquad .
(13) $20^{\circ}=$ \qquad radian.
(14) $\frac{\pi}{9}$ radian $=$ \qquad

Attempt any four

Q - 2
(1) Show that the points $(4,8),(4,12)$ and $(4+2 \sqrt{3}, 10)$ are the vertices of an equilateral triangle.
(2) Find co ordinates of the point of trisection of the line segment joining points $(4,5)$ and $(13,-4)$.
(3) Show that $(3,2),(5,4)$ and $(7,6)$ are collinear.

Q-3
(1) Find the equation of line perpendicular to line $4 x-y+5=0$ and passing through $(1,-2)$.
(2) Find centre and radius of circle $x^{2}+y^{2}-2 x+4 y-1=0$.
(3) Find the equation of circle having centre $(2,3)$ and passing through $(3,4)$.

Q-4
(1) If $\mathrm{A}=\left[\begin{array}{ccc}2 & 3 & 6 \\ -1 & 2 & 5\end{array}\right], \mathrm{B}=\left[\begin{array}{lll}0 & 2 & -8 \\ 2 & 4 & -2\end{array}\right]$ and $\mathrm{C}=\left[\begin{array}{ccc}1 & 3 & -3 \\ 1 & 4 & 1\end{array}\right]$, prove that $2 \mathrm{~A}+3 \mathrm{~B}-4 \mathrm{C}=0$.
(2) If $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$, prove that $A^{2}-5 A-2 I=O$.
(3) If $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right], B=\left[\begin{array}{ll}1 & 2 \\ 2 & 1 \\ 1 & 2\end{array}\right]$, find $A B$ and $B A$.

Q-5
(1) Solve the equations using matrix method: $2 x-y=4$

$$
\begin{equation*}
3 x+y=1 \tag{5}
\end{equation*}
$$

(2) If $A=\left[\begin{array}{ccc}-4 & -3 & -3 \\ 1 & 0 & 1 \\ 4 & 4 & 3\end{array}\right]$, prove that $\operatorname{adj} \mathrm{A}=\mathrm{A}$.
(3) If $A=\left[\begin{array}{ll}2 & 3 \\ 1 & 0\end{array}\right], B=\left[\begin{array}{cc}4 & 1 \\ 2 & -3\end{array}\right]$, prove that $(A+B)^{T}=A^{T}+B^{T}$.

Q-6
(1) Find the middle term of $\left(\frac{x}{2}+\frac{2}{y}\right)^{12}$.
(2) Find the constant term of $\left(x^{2}-\frac{1}{x}\right)^{6}$.
(3) Find the approximate value of $\sqrt[3]{1003}$ using binomial theorem.

Q-7
(1) Draw the graph of $y=\sin x(0 \leq x \leq \pi)$.
(2) Prove that $\frac{\cos \left(90^{8}-A\right) \cos \left(180^{8}-A\right) \tan \left(180^{8}+A\right)}{\sin \left(90^{8}-A\right) \sin \left(180^{\circ}-A\right) \tan \left(180^{8}-A\right)}=1$
(3) Prove that $\tan 20^{\circ}+\tan 25^{\circ}+\tan 20^{\circ} \tan 25^{\circ}=1$.

Q-8
(1) Prove that $\sin 3 \theta=3 \sin \theta-4 \sin ^{3} \theta$.
(2) Prove that $\frac{\sin 4 x+\sin 5 x+\sin 6 x}{\cos 4 x+\cos 5 x+\cos 6 x}=\tan 5 x$.
(3) Prove that $\tan ^{-1}\left(\frac{1}{2}\right)+\tan ^{-1}\left(\frac{1}{3}\right)=\frac{\pi}{4}$.
************************************4-5-2015******************************

